413 research outputs found

    (Almost) tight bounds for randomized and quantum Local Search on hypercubes and grids

    Full text link
    The Local Search problem, which finds a local minimum of a black-box function on a given graph, is of both practical and theoretical importance to many areas in computer science and natural sciences. In this paper, we show that for the Boolean hypercube \B^n, the randomized query complexity of Local Search is Θ(2n/2n1/2)\Theta(2^{n/2}n^{1/2}) and the quantum query complexity is Θ(2n/3n1/6)\Theta(2^{n/3}n^{1/6}). We also show that for the constant dimensional grid [N1/d]d[N^{1/d}]^d, the randomized query complexity is Θ(N1/2)\Theta(N^{1/2}) for d4d \geq 4 and the quantum query complexity is Θ(N1/3)\Theta(N^{1/3}) for d6d \geq 6. New lower bounds for lower dimensional grids are also given. These improve the previous results by Aaronson [STOC'04], and Santha and Szegedy [STOC'04]. Finally we show for [N1/2]2[N^{1/2}]^2 a new upper bound of O(N1/4(loglogN)3/2)O(N^{1/4}(\log\log N)^{3/2}) on the quantum query complexity, which implies that Local Search on grids exhibits different properties at low dimensions.Comment: 18 pages, 1 figure. v2: introduction rewritten, references added. v3: a line for grant added. v4: upper bound section rewritte

    Efficient quantum protocols for XOR functions

    Full text link
    We show that for any Boolean function f on {0,1}^n, the bounded-error quantum communication complexity of XOR functions ff\circ \oplus satisfies that Qϵ(f)=O(2d(logf^1,ϵ+lognϵ)log(1/ϵ))Q_\epsilon(f\circ \oplus) = O(2^d (\log\|\hat f\|_{1,\epsilon} + \log \frac{n}{\epsilon}) \log(1/\epsilon)), where d is the F2-degree of f, and f^1,ϵ=ming:fgϵf^1\|\hat f\|_{1,\epsilon} = \min_{g:\|f-g\|_\infty \leq \epsilon} \|\hat f\|_1. This implies that the previous lower bound Qϵ(f)=Ω(logf^1,ϵ)Q_\epsilon(f\circ \oplus) = \Omega(\log\|\hat f\|_{1,\epsilon}) by Lee and Shraibman \cite{LS09} is tight for f with low F2-degree. The result also confirms the quantum version of the Log-rank Conjecture for low-degree XOR functions. In addition, we show that the exact quantum communication complexity satisfies QE(f)=O(2dlogf^0)Q_E(f) = O(2^d \log \|\hat f\|_0), where f^0\|\hat f\|_0 is the number of nonzero Fourier coefficients of f. This matches the previous lower bound QE(f(x,y))=Ω(logrank(Mf))Q_E(f(x,y)) = \Omega(\log rank(M_f)) by Buhrman and de Wolf \cite{BdW01} for low-degree XOR functions.Comment: 11 pages, no figur

    Sensitivity Conjecture and Log-rank Conjecture for functions with small alternating numbers

    Get PDF
    The Sensitivity Conjecture and the Log-rank Conjecture are among the most important and challenging problems in concrete complexity. Incidentally, the Sensitivity Conjecture is known to hold for monotone functions, and so is the Log-rank Conjecture for f(xy)f(x \wedge y) and f(xy)f(x\oplus y) with monotone functions ff, where \wedge and \oplus are bit-wise AND and XOR, respectively. In this paper, we extend these results to functions ff which alternate values for a relatively small number of times on any monotone path from 0n0^n to 1n1^n. These deepen our understandings of the two conjectures, and contribute to the recent line of research on functions with small alternating numbers

    Quantum game players can have advantage without discord

    Full text link
    The last two decades have witnessed a rapid development of quantum information processing, a new paradigm which studies the power and limit of "quantum advantages" in various information processing tasks. Problems such as when quantum advantage exists, and if existing, how much it could be, are at a central position of these studies. In a broad class of scenarios, there are, implicitly or explicitly, at least two parties involved, who share a state, and the correlation in this shared state is the key factor to the efficiency under concern. In these scenarios, the shared \emph{entanglement} or \emph{discord} is usually what accounts for quantum advantage. In this paper, we examine a fundamental problem of this nature from the perspective of game theory, a branch of applied mathematics studying selfish behaviors of two or more players. We exhibit a natural zero-sum game, in which the chance for any player to win the game depends only on the ending correlation. We show that in a certain classical equilibrium, a situation in which no player can further increase her payoff by any local classical operation, whoever first uses a quantum computer has a big advantage over its classical opponent. The equilibrium is fair to both players and, as a shared correlation, it does not contain any discord, yet a quantum advantage still exists. This indicates that at least in game theory, the previous notion of discord as a measure of non-classical correlation needs to be reexamined, when there are two players with different objectives.Comment: 15 page

    A single-shot measurement of the energy of product states in a translation invariant spin chain can replace any quantum computation

    Get PDF
    In measurement-based quantum computation, quantum algorithms are implemented via sequences of measurements. We describe a translationally invariant finite-range interaction on a one-dimensional qudit chain and prove that a single-shot measurement of the energy of an appropriate computational basis state with respect to this Hamiltonian provides the output of any quantum circuit. The required measurement accuracy scales inverse polynomially with the size of the simulated quantum circuit. This shows that the implementation of energy measurements on generic qudit chains is as hard as the realization of quantum computation. Here a ''measurement'' is any procedure that samples from the spectral measure induced by the observable and the state under consideration. As opposed to measurement-based quantum computation, the post-measurement state is irrelevant.Comment: 19 pages, transition rules for the CA correcte
    corecore